Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Psychopharmacology (Berl) ; 239(5): 1337-1347, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34291308

RESUMO

Drugs of abuse including cannabis and inhalants impair risk/reward decision making. Cannabis use is often concurrent with inhalant intoxication; yet, preclinical studies investigating the role of endocannabinoids in inhalant misuse are limited. To address this gap in the literature, we used the well-validated probabilistic discounting task to assess risk/reward decision making in rodents following combinations of toluene vapor (a common inhalant) and manipulations of cannabinoid receptor type 1 (CB1R) signaling. As reported previously, acute exposure to toluene vapor disrupted behavioral flexibility during probabilistic discounting. Systemic administration of the CB1R inverse agonist AM281 did not prevent toluene-induced alterations in risky choices, but did independently reduce win-stay behavior, increase choice latency, and increase omissions. Toluene-induced deficits in probabilistic discounting are thought to involve impaired medial prefrontal cortex (mPFC) activity. As we previously reported that some of toluene's inhibitory effects on glutamatergic signaling in the mPFC are endocannabinoid-dependent, we tested the hypothesis that mPFC CB1R activity mediates toluene-induced deficits in discounting. However, bilateral injection of the CB1R inverse agonist AM251 prior to toluene vapor exposure had no effect on toluene-induced changes in risk behavior. In a final set of experiments, we injected the CB1R inverse agonist AM251 (5 and 50 ng), the CB1R agonist WIN55,212-2 (50 ng and 500 ng), or vehicle into the mPFC prior to testing. While mPFC CB1R stimulation did not affect any of the measures tested, the CB1R inverse agonist caused a dose-dependent reduction in win-stay behavior without altering any other measures. Together, these studies indicate that toluene-induced deficits in probabilistic discounting are largely distinct from CB1R-dependent effects that include decreased effectiveness of positive reinforcement (mPFC CB1Rs), decision making speed, and task engagement (non-mPFC CB1Rs).


Assuntos
Antagonistas de Receptores de Canabinoides , Tolueno , Agonistas de Receptores de Canabinoides/farmacologia , Tomada de Decisões , Endocanabinoides , Receptor CB1 de Canabinoide , Receptores de Canabinoides , Recompensa
2.
Front Neurosci ; 14: 880, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973434

RESUMO

Inhalants, including volatile organic solvents such as toluene, continue to be one of the most prevalent, and often first substances abused by adolescents. Like other drugs of abuse, toluene affects the function of neurons within key brain reward circuits including the prefrontal cortex, ventral tegmental area, and nucleus accumbens. However, preclinical models used to study these toluene-induced adaptations generally employ passive exposure paradigms that do not mirror voluntary patterns of solvent exposure observed in humans. To address this shortcoming, we developed an inhalation chamber containing active and inactive nose pokes, cue lights, flow-through vaporizers, and software-controlled valves to test the hypothesis that rats will voluntarily self-administer toluene vapor. Following habituation and self-administration (SA) training rats achieve vapor concentrations associated with rewarding effects of toluene, and maintain responding for toluene vapor, but not for air. During extinction trials, rats showed an initial burst of drug-seeking behavior similar to that of other addictive drugs and then reduced responding to Air SA levels. Responding on the active nose poke recovered during cue-induced reinstatement but not following a single passive exposure to toluene vapor. The results from these studies establish a viable toluene SA protocol that will be useful in assessing toluene-induced changes in addiction neurocircuitry.

3.
J Neurosci ; 39(46): 9207-9220, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31548237

RESUMO

Inhalant (e.g., toluene) misuse is linked to behavioral and cognitive deficits in humans, yet preclinical studies of the effect of inhalants on higher-order cognition are limited. We addressed this gap in the literature by examining the effect of toluene vapor exposure on risk/reward decision-making in male and female Sprague-Dawley rats using a probabilistic discounting task. In this task, rodents chose a risky/large reward or a safe/small reward, with the odds of risky reinforcement descending or ascending throughout the test session. We observed a dose-dependent, sex-independent deficit in behavioral flexibility during probabilistic discounting caused by acute toluene exposure. Rats exposed to toluene vapor during adolescence and tested as adults performed comparably to air-treated controls and were susceptible to the effects of an acute toluene challenge. These behavioral flexibility deficits observed suggests dysfunctional medial prefrontal cortex (mPFC) activity. To address this hypothesis, we virally expressed the genetically encoded calcium sensor GCaMP6f in glutamatergic mPFC neurons and monitored calcium transients in real-time using in vivo fiber photometry. mPFC activity peaked before either lever press during free-choice trials in toluene- and air-treated animals. During forced-choice trials, GCaMP6f transients shifted from pre-risky to pre-safe choice, an effect mitigated by acute toluene exposure. mPFC activity decreased during rewarded trials, with larger decreases following risky/large wins compared with safe/small wins. Toluene-treated animals also had decreased mPFC activity during rewarded trials, but there was no distinction between risky/large wins and safe/small wins. These results provide physiological evidence for mPFC-dependent behavioral deficits caused by toluene.SIGNIFICANCE STATEMENT Inhalants (e.g., toluene) are an understudied class of drugs of abuse that cause devastating behavioral and cognitive deficits in humans. Understanding the neurobiological interactions of toluene vapor using animal models is important for developing effective treatment strategies for inhalant addicts. Here we find that toluene vapor reduces behavioral flexibility in rodents making risk/reward-based decisions. The medial prefrontal cortex (mPFC) drives behavioral flexibility during this type of decision-making and we show that toluene reduces the ability of mPFC neurons to track optimal choices as reward probabilities change. Toluene also reduces these neurons' ability to distinguish between small and large rewards. A combination of these factors likely leads to the impaired performance in probabilistic discounting following acute toluene exposure.


Assuntos
Tomada de Decisões/fisiologia , Neurônios/fisiologia , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/fisiologia , Recompensa , Assunção de Riscos , Tolueno/administração & dosagem , Animais , Sinalização do Cálcio , Feminino , Masculino , Ratos Sprague-Dawley , Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...